Abstract

The quality of science data provided by ESA soil moisture and ocean salinity (SMOS) satellite is degraded by the presence of artificial sources emitting in the protected part of the L-band, which is preserved for passive measurements by ITU regulation. These sources appear as high temperature points in SMOS brightness temperature products (e.g., Level 1C products), and may affect the retrievals of both SMOS (e.g., Level 2 products). In this contribution, a method is presented to quantify the impact of radio-frequency interference (RFI) on each SMOS snapshots, through the definition of an “RFI index” based on the number, position, and intensity of the RFI sources present in the snapshot. The main purpose of RFI indices is to provide the user of SMOS scientific data with information to ease the RFI filtering, thus achieving more accurate results. The comparison of RFI indices with the outputs of two different methods providing similar snapshot-wise information about RFI shows that the use of RFI indices reduces the probability of missed RFI detections, without increasing the risk for false alarms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.