Abstract

Neurofeedback (NFB) is a potential alternative treatment for children with ADHD that aims to optimize brain activity. Whereas most studies into NFB have investigated behavioral effects, less attention has been paid to the effects on neurocognitive functioning. The present randomized controlled trial (RCT) compared neurocognitive effects of NFB to (1) optimally titrated methylphenidate (MPH) and (2) a semi-active control intervention, physical activity (PA), to control for non-specific effects. Using a multicentre three-way parallel group RCT design, children with ADHD, aged 7–13, were randomly allocated to NFB (n = 39), MPH (n = 36) or PA (n = 37) over a period of 10–12 weeks. NFB comprised theta/beta training at CZ. The PA intervention was matched in frequency and duration to NFB. MPH was titrated using a double-blind placebo controlled procedure to determine the optimal dose. Neurocognitive functioning was assessed using parameters derived from the auditory oddball-, stop-signal- and visual spatial working memory task. Data collection took place between September 2010 and March 2014. Intention-to-treat analyses showed improved attention for MPH compared to NFB and PA, as reflected by decreased response speed during the oddball task [ηp2 = 0.21, p < 0.001], as well as improved inhibition, impulsivity and attention, as reflected by faster stop signal reaction times, lower commission and omission error rates during the stop-signal task (range ηp2 = 0.09–0.18, p values <0.008). Working memory improved over time, irrespective of received treatment (ηp2 = 0.17, p < 0.001). Overall, stimulant medication showed superior effects over NFB to improve neurocognitive functioning. Hence, the findings do not support theta/beta training applied as a stand-alone treatment in children with ADHD.

Highlights

  • Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder [1] characterized by age-inappropriate symptoms of inattention, hyperactivity and impulsivity [2]

  • All analyses were rerun using complete case analysis and all significant findings were replicated with two exceptions: complete case analyses showed a significant larger decrease in both commission errors, F(1,61) = 5.63, p = 0.021, ηp2 = 0.08, and omission errors, F(1,61) = 5.36, p = 0.024, ηp2 = 0.08, for the MPH group compared to the NFB group, whereas these differences just escaped conventional levels of significance in the intention-to-treat analyses

  • The present study compared neurofeedback as a stand-alone treatment to both stimulant medication and physical activity, acting as a semi-active control condition, on attention, inhibition and working memory. These neurocognitive functions are often impaired in children with ADHD [10] and play key roles in explanatory models of the disorder [51]

Read more

Summary

Introduction

Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder [1] characterized by age-inappropriate symptoms of inattention, hyperactivity and impulsivity [2]. Impaired neurocognitive functioning is considered a core dysfunction of the disorder [3, 4] and is reflected in deficiencies in a variety of neurocognitive functions including attention, inhibition, and working memory [5,6,7,8]. Stimulant medication is a commonly used and effective treatment in reducing behavioral symptoms [9] and has been found to improve neurocognitive functioning [10] in children with ADHD. Neurofeedback has been proposed to be a potentially effective non-pharmacological treatment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call