Abstract

The total synthesis of the potent new antibiotic disciformycin B (2) is described, which shows significant activity against methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA/VRSA) strains. The synthetic route is based on macrocyclization of a tetraene substrate to the 12-membered macrolactone core by ring-closing olefin metathesis (RCM). Although macrocyclization was accompanied by concomitant cyclopentene formation by an alternative RCM pathway, conditions were established to give the macrocycle as the major product. Key steps in the construction of the RCM substrate include a highly efficient Evans syn-aldol reaction, the asymmetric Brown allylation of angelic aldehyde, and the stereoselective Zn(BH4 )2 -mediated 1,2-reduction of an enone. The synthesis was completed by late-stage dehydrative glycosylation to introduce the d-arabinofuranosyl moiety and final chemoselective allylic alcohol oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.