Abstract

BackgroundThe control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species.ResultsWe use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins.ConclusionsThis family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

Highlights

  • The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes

  • In all species studied to date, the regulation of the expression of anthocyanin biosynthetic genes are through a complex of MYB transcription factors (TF), basic helix-loop-helix TFs and WD-repeat proteins

  • In order to ascertain whether, in any given cultivar, these represent different genes or are alleles of the one gene, we designed PCR primers to amplify a region of genomic DNA common to all three of these genes, spanning a region from the promoter through to exon 1 of the published sequences

Read more

Summary

Introduction

The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. Rubus (raspberry, blackberry, boysenberry), as well as ornamental plants such as Rosa (rose). In these fruits and flowers, colour is a key quality trait and is often caused by anthocyanin. The structural genes of the flavonoid biosynthetic pathway are largely regulated at the level of transcription. In all species studied to date, the regulation of the expression of anthocyanin biosynthetic genes are through a complex of MYB transcription factors (TF), basic helix-loop-helix (bHLH) TFs and WD-repeat proteins (the MYB-bHLH-WD40 “MBW” complex; [12]).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.