Abstract
This paper is devoted to summarizing and discussing the scientific progress achieved during the past decade in diode-pumped ytterbium-doped solid-state lasers. The output radiation centered on the 1- μ m region is of particular interest for the well-known applications of previously developed Nd3+ lasers. Several hosts have been studied and tested in recent years. Due to the enormous number of papers dealing with ytterbium, Yb 3+, doped hosts, we will limit our report here to materials based on transparent polycrystalline sesquioxide laser ceramics, such as Lu2O3, Sc2O3, and Y2O3 . The reason is basically due to the wider emission band of ytterbium-doped sesquioxides as compared with more commonly used hosts such as YAG. The higher thermal conductivity with respect to hosts such as CaF2 makes them very interesting for applications requiring both good thermal conductivity and a wide fluorescence emission band, as well as for short pulse generation at high average power levels. Furthermore, the replacement of trivalent Yb in sesquioxides does not require any charge compensation (as is the for instance case of the replacement of divalent Ca in CaF2), which makes their fabrication easier, in particular at high doping levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.