Abstract
Liquid electrolytes used in commercial Li-ion batteries are generally based on toxic volatile and flammable organic carbonate solvents, thus raising safety concerns in case of thermal runaway. The most striking solution at present is to switch on all solid-state designs exploiting polymer materials, films, ceramics, low-volatile, green additives, etc. The replacement of liquids component with low-flammable solids is expected to improve the safety level of the device intrinsically. Moreover, a solid-state configuration is expected to guarantee improved energy density systems. However, low ionic conductivity, low cation transport properties and issues in cell manufacturing processes must be overcome [1].Electrochemical performance in lab-scale devices can be readily improved using different RTILs or specific low-volatile additives. Here, an overview is offered of the recent developments in our labs on innovative polymer-based electrolytes allowing high ionic mobility, particularly attractive for safe, high-performing, solid-state Li-metal batteries, and obtained by different techniques, including solvent-free UV-induced photopolymerization. Cyclic voltammetry and galvanostatic charge/discharge cycling coupled with electrochemical impedance spectroscopy exploiting different electrode materials (e.g., LFP, Li-rich NMC, LNMO, Si/C) demonstrate specific capacities approaching theoretical values even at high C-rates and stable operation for hundreds of cycles at ambient temperature [2,3]. Direct polymerization procedures on top of the electrode films are also used to obtain an intimate electrode/electrolyte interface and full active material utilization in both half and full-cell architectures. In addition, results of composite hybrid polymer electrolytes [4] and new single-ion conducting polymers [5] are shown, specifically developed to attain improved ion transport and high oxidation stability for safe operation with high voltage electrodes even at ambient conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.