Abstract
Because of their carcinogenicity and mutagenicity, the elimination of organic contaminants from surface and subsurface water is a subject of environmental significance. Conventional water decontamination approaches such as membrane separation, ultrafiltration, adsorption, reverse osmosis, coagulation, etc., have relatively higher operating costs and can generate highly toxic secondary contaminants. On the other hand, heterogeneous photocatalysis, an advanced oxidation process (AOP), is considered a clean and cost-effective process for organic pollutants degradation. Owing to their distinctive structure and physicochemical properties non-spherical semiconductors have gained considerable limelight in the photocatalytic degradation of organic contaminants. The current review briefly introduces a wide range of organic water contaminants. Recent advances in non-spherical semiconductor assembly and their photocatalytic degradation applications are highlighted. The underlying mechanism, fundamentals of photocatalytic reactions, and the factors affecting the degradation performance are also alluded including the current challenges and future research perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.