Abstract

During earthquakes, loose saturated granular soils can experience a sharp rise in excess pore pressures and consequent strength loss as their structure attempts to compact, a phenomenon known as liquefaction. During and following liquefaction, soil pore fluid redistributes, causing the settlement of overlying structures. This paper describes and explains important field and experimental observations on the behaviour of buildings with shallow foundations on liquefied soil. Liquefaction failure is responsible for large economic losses, and is therefore a very current topic in geotechnical engineering research. This has been recently shown by the widespread building damages due to liquefaction of the foundation soil observed during earthquakes in Chile and New Zealand, such as the Maule earthquake in 2010, the Darfield earthquake in 2010 and the two earthquakes that hit the city of Christchurch in February and June 2011.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call