Abstract

In this paper, we provide an overview of recent research efforts on networked control systems under denial-of-service attacks. Our goal is to discuss the utility of different attack modeling and analysis techniques proposed in the literature for addressing feedback control, state estimation, and multi-agent consensus problems in the face of jamming attacks in wireless channels and malicious packet drops in multi-hop networks. We discuss several modeling approaches that are employed for capturing the uncertainty in denial-of-service attack strategies. We give an outlook on deterministic constraint-based modeling ideas, game-theoretic and optimization-based techniques and probabilistic modeling approaches. A special emphasis is placed on tail-probability based failure models, which have been recently used for describing jamming attacks that affect signal to interference-plus-noise ratios of wireless channels as well as transmission failures on multi-hop networks due to packet-dropping attacks and non-malicious issues. We explain the use of attack models in the security analysis of networked systems. In addition to the modeling and analysis problems, a discussion is provided also on the recent developments concerning the design of attack-resilient control and communication protocols.

Highlights

  • Many industrial control systems rely on information and communication technologies for their operation

  • We focus on packet drop attacks by malicious nodes in multi-hop networks, and jamming attacks in wireless channels

  • In [26,36,37], we investigated the effects of jamming attacks by exploring physical wireless channel models based on Signal to Interference plus Noise Ratio (SINR)

Read more

Summary

Introduction

Many industrial control systems rely on information and communication technologies for their operation. As the Internet of Things is becoming more popular, the use of wireless technologies in control systems is expected to increase even more. These new developments are bringing efficiency to control systems, but they are expected to introduce several vulnerabilities. A major concern is that cyber-attackers may be able to exploit the vulnerabilities in control systems that are utilized in power grids, transportation, water distribution, and many other services that are important for the society. To prevent financial losses and environmental damages that may be caused by disruption of those services, it is critical to assess and improve the security of existing control systems and develop new systems that are resilient against cyber attacks

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call