Abstract

Concept drift techniques aim at learning patterns from data streams that may change over time. Although such behavior is not usually expected in controlled environments, real-world scenarios can face changes in the data, such as new classes, clusters, and features. Traditional classifiers can be easily fooled in such situations, resulting in poor performances. Common concept drift domains include recommendation systems, energy consumption, artificial intelligence systems with dynamic environment interaction, and biomedical signal analysis (e.g., neurogenerative diseases). In this paper, we surveyed several works that deal with concept drift, as well as we presented a comprehensive study of public synthetic and real datasets that can be used to cope with such a problem. In addition, we considered a review of different types of drifts and approaches to handling such changes in the data. We considered different learners employed in classification tasks and the use of drift detection mechanisms, among other characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call