Abstract

Air pollutants consisting of atmospheric particulate matter (PM) poses a major threat to the environment and human health. However, due to their carbonaceous nature, these atmospheric PM can also be used as a precursor for fabrication of high-valued carbon nanomaterials (CNMs) leading to waste to wealth as well as mitigation of air pollution. Over the few years, various results have been reported on different types of physical and chemical methods for the synthesis of CNMs from atmospheric particulate matter with the help of top down and bottom up methods; however, there is a lack of review on these innovative processes and outcome in order to assess their feasibility and suitability for further investigation. This review critically assesses the synthesis, identification, and characterization of different types of CNMs derived from the atmospheric PM. The fascinating fluorescence properties along with the novel multifarious applications of such PM-derived CNMs are also extensively discussed in this review work. This unique review will certainly help to make a new avenue for air pollution mitigation through conversion of PMs in to value added nanomaterials (VNMs) and will boost the research activity in the field of environmental nanotechnology for a cleaner environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.