Abstract
Additive manufacturing (AM) technologies have many advantages, such as design flexibility, minimal waste, manufacturing of very complex structures, cheaper production, and rapid prototyping. This technology is widely used in many fields, including health, energy, art, design, aircraft, and automotive sectors. In the manufacturing process of 3D printed products, it is possible to produce different objects with distinctive filament and powder materials using various production technologies. AM covers several 3D printing techniques such as fused deposition modeling (FDM), inkjet printing, selective laser melting (SLM), and stereolithography (SLA). The present review provides an extensive overview of the recent progress in 3D printing methods for electrochemical fields. A detailed review of polymeric and metallic 3D printing materials and their corresponding printing methods for electrodes is also presented. Finally, this paper comprehensively discusses the main benefits and the drawbacks of electrode production from AM methods for energy conversion systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.