Abstract

Coal combustion technology is required that is capable of: (1) co-producing electricity and hydrogen from coal while; (2) achieving high efficiency, low capital cost, low operating cost, and near-zero atmospheric emissions; and (3) producing a sequestration-ready carbon dioxide stream. Clean Energy Systems, Inc. (CES) and Siemens Power Generation, Inc., are developing this technology that would lead to a 300 to 600 MW, design for a zero emissions coal syngas plant, targeted for the year 2015, CES and Siemens received awards on September 30, 2005 from the U.S. Department of Energy’s; Office of Fossil Energy Turbine Technology R&D Program. These awards are designed to advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants. Studies have shown [1–4] that replacing air with nearly pure oxygen and steam in a turbine’s combustion chamber is a promising approach to designing coal based power plants with high efficiency and near-zero emissions. Siemens will combine current steam and gas turbine technologies to design an optimized turbine that uses oxygen with coal derived hydrogen fuels in the combustion process under a DOE Turbine Development Project [5]. CES will develop and demonstrate a new combustor technology powered by coal syngas and oxygen under a DOE Combustor Development Project [6]. The proposed programs build upon twelve years of prior technical work and government-sponsored research to develop and demonstrate zero-emission fossil fuel power generation. The planned system studies build upon previous work conducted by private, public, and foreign organizations, including CES [7–9], DOE’s National Energy Technology Laboratory (NETL) [10–12], Air Liquide (AL) [1,13], Lawrence Livermore National Laboratory (LLNL) [2], Fern Engineering, Inc. [14], and Japanese investigators [15, 16]. Other pertinent data related to coal gasification, advanced air separation unit (ASU), plant integration and plant systems optimization, etc., can be found in references [17–23].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.