Abstract

Natural organic matter (NOM) constitutes the terrestrial and aquatic sources of organic plant like material found in water bodies. As of recently, an ever-increasing amount of effort is being put towards developing better ways of unraveling the heterogeneous nature of NOM. This is important as NOM is responsible for a wide variety of both direct and indirect effects: ranging from aesthetic concerns related to taste and odor, to issues related to disinfection by-product formation and metal mobility. A better understanding of NOM can also provide a better appreciation for treatment design; lending a further understanding of potable water treatment impacts on specific fractions and constituents of NOM. The use of high performance size-exclusion chromatography has shown a growing promise in its various applications for NOM characterization, through the ability to partition ultraviolet absorbing moieties into ill-defined groups of humic acids, hydrolysates of humics, and low molecular weight acids. HPSEC also has the ability of simultaneously measuring absorbance in the UV–visible range (200–350 nm); further providing a spectroscopic fingerprint that is simply unavailable using surrogate measurements of NOM, such as total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254), excitation-emission matrices (EEM), and specific ultraviolet absorbance at 254 nm (SUVA254). This review mainly focuses on the use of HPSEC in the characterization of NOM in a potable water setting, with an additional focus on strong-base ion-exchangers specifically targeted for NOM constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.