Abstract
BackgroundTrypanosomatids are among the most critical parasites for public health due to their impact on human, animal, and plant health. Diseases associated with these pathogens manifest mainly in poor and vulnerable populations, where social, environmental, and biological factors modulate the case incidence and geographical distribution.MethodsWe used Sanger and amplicon-based next-generation sequencing (NGS) in samples from different mammals to identify trypanosomatid infections in several departments in Colombia. A total of 174 DNA samples (18 humans, 83 dogs, and 73 wild mammals) were analyzed by conventional PCR using a fragment of the heat shock protein 70 (Hsp70) gene and Sanger sequenced the positive samples. Twenty-seven samples were sent for amplicon-based NGS using the same gene fragment. Data obtained were used to perform diversity analyses.ResultsOne hundred and thirteen samples were positive for PCR by Hsp70 fragment; these corresponded to 22.1% Leishmania spp., 18.6% L. amazonensis, 9.7% L. braziliensis, 14.2% L. infantum, 8% L. panamensis, and 27.4% Trypanosoma cruzi. Comparison of the identified species by the two sequencing technologies used resulted in 97% concordance. Alpha and beta diversity indices were significant, mainly for dogs; there was an interesting index of coinfection events in the analyzed samples: different Leishmania species and the simultaneous presence of T. cruzi and even T. rangeli in one of the samples analyzed. Moreover, a low presence of L. braziliensis was observed in samples from wild mammals. Interestingly, to our knowledge, this is the first report of Leishmania detection in Hydrochaeris hydrochaeris (capybara) in Colombia.ConclusionsThe Hsp70 fragment used in this study is an optimal molecular marker for trypanosomatid identification in many hosts and allows the identification of different species in the same sample when amplicon-based sequencing is used. However, the use of this fragment for molecular diagnosis through conventional PCR should be carefully interpreted because of this same capacity to identify several parasites. This point is of pivotal importance in highly endemic countries across South America because of the co-circulation of different genera from the Trypanosomatidae family. The findings show an interesting starting point for One Health approaches in which coevolution and vector-host interactions can be studied.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.