Abstract
Since the Industrial Revolution, anthropogenic carbon dioxide (CO2) emissions have grown exponentially, accumulating in the atmosphere and leading to global warming. According to the IPCC (IPCC Special Report 2018), atmospheric warming should be less than 2 ℃ to avoid the most serious consequences associated with climate change. This goal can be achieved in part by reducing CO2 emissions, together with capturing and sequestering CO2 from point sources. The most mature storage technique is sequestration in deep saline aquifers. In addition, CO2 can be mineralized and sequestered in solid form by various techniques: ex-situ, surficial and in situ mineralization. Ex situ and surficial approaches may produce valuable products while mitigating environmental hazards. In-situ mineralization uses ultramafic and mafic geological formations for permanent, solid storage. A portfolio that limits warming to less than 2 ℃ by 2100 will include avoiding CO2 emissions and removal of CO2 from air. Regardless of the specific mix of approaches, it will be essential to permanently sequester tens of billions of tons of CO2. Maximizing the potential of all of these storage technologies will help to meet global climate goals. The research agenda published by the National Academy of Science (NASEM 2019) calls for about $1 billion over a 10-20 year time period to advance deployment of CO2 sequestration in deep sedimentary reservoirs at the GtCO2/yr scale and develop CO2 mineralization at the MtCO2/yr scale. This overview study presents the advantages, drawbacks, cost, and CO2 storage potential of each technique, the current and future projects in this domain, and potential sequestration options in geologic formation around the world.
Highlights
The cumulative release of anthropogenic carbon dioxide (CO2) into the atmosphere has been estimated at 2,035 ± 205 GtCO2 from 1870 to 2015 (Le Quéré et al, 2015)
Sequestration of CO2 has to increase to the GtCO2/yr scale to play a significant role in mitigation of climate change
The research agenda outlined here, and described in more detail in National Academies of Sciences Engineering Medicine (2019), includes priorities ranging from fundamental research on kinetics, rock mechanics, numerical simulation, and database creation to small and medium-scale pilot projects for surficial and in situ carbon mineralization to assess the efficiency of reservoirs and to reduce associated risks
Summary
The cumulative release of anthropogenic carbon dioxide (CO2) into the atmosphere has been estimated at 2,035 ± 205 GtCO2 from 1870 to 2015 (Le Quéré et al, 2015). Underground CO2 sequestration in sedimentary formations is the most mature technique for storage of CO2 captured from point sources, and perhaps by DAC, as commercialsize CO2 injection projects are already operating today This approach has been carried out over two decades globally, currently storing roughly 3.7–4.2 MtCO2/year, for a cumulative total of 30.4 MtCO2 at the end of 2017 (Global CCS Institute, 2019; National Academies of Sciences Engineering Medicine, 2019). The combined underground storage capacity in saline aquifers and hydrocarbon reservoirs is estimated to range between 5,000 and 25,000 Gt CO2 (de Coninck and Benson, 2014), which is larger than necessary to limit warming to
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.