Abstract

Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call