Abstract
This paper gives a critical overview of the recent advances in NOx abatement in excess of oxygen based on the combination of the NOx storage–reduction (NSR) and selective catalytic reduction (SCR) processes. Ammonia may be produced during the regeneration step of NSR catalyst, by the direct reaction (NOx+H2) or/and the isocyanate route. Recent literature highlights that the ammonia production rate is higher than the ammonia reaction rate with the remaining NOx in order to form N2. In order to optimize the use of the in situ produced ammonia, a catalyst dedicated to the NOx-SCR by NH3 can be added. Zeolites are the main studied materials for this application. Catalytic reduction of NOx by NH3 relates a complex mechanism, in which the nuclearity of the active sites is still an open question. Over zeolites, the NO to NO2 oxidation step is reported as the rate-determining step of the SCR reaction, even if the first step of the reaction is ammonia adsorption on zeolite Brønsted acid sites. Thus, the addition of a NH3-SCR material to the NSR catalyst is a possible way to increase the global NOx abatement and maximize the N2 selectivity, together with the prevention of the ammonia slip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.