Abstract

Miocene to Pleistocene basaltic volcanic fields are common in the Pannonian Basin in Central Europe (Figs 1 & 2). Included in these fields are the here described monogenetic volcanic fields of western Hungary. These volcanic fields provide excellent exposures to explore the volcanic facies architecture of monogenetic volcanoes that formed during a period of intra-continental volcanism that lasted over 6 million years (Fig. 2). Over this 6 millions of years eruptive history (Wijbrans et al., 2007), volcanic fields such as the BakonyBalaton Highland (BBHVF) or the Little Hungarian Plain Volcanic Field (LHPVF) formed (Fig. 1) as typical low magma-flux, time-predicted fields that were largely tectonicallycontrolled rather than magmatically-controlled (Martin & Nemeth, 2004; Kereszturi et al., 2011). The preserved volcanic eruptive products of the BBHVF, including pyroclastic, effusive and intrusive rocks, have been estimated to be about 3 km3, significantly larger than those erupted through the LHPVF (Martin & Nemeth, 2004; Kereszturi et al., 2011). Considering the potential erosion of distal air fall tephras and the common juvenile pyroclast-poor nature of the majority of the preserved pyroclastic rocks, a recalculation of eruptive volumes to dense rock equivalent (DRE) values would likely yield a total erupted volume of less than 5 km3 for the western Hungarian Miocene to Pleistocene volcanic fields. Here we provide a short review of the current research on these monogenetic volcanic fields in western Hungary with an aim to characterise their pyroclastic successions and infer the eruptive environment where they erupted and accumulated. Furthermore, we define key research subjects for future study on these fields on the basis of our current knowledge. Such future research directions for the western Hungarian monogenetic volcanic fields could significantly contribute to our understanding of the volcanic evolution, eruption styles, and preservation potential of monogenetic volcanic fields in general. A “sister” volcanic field approach is also proposed to link these volcanic fields to other, similar volcanic fields worldwide (Nemeth et al., 2010).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.