Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.