Abstract

A number of proteins with intrinsically disordered (ID) regions/domains are reported to be found disproportionately higher in transcription factors. Available evidences suggest that presence of ID region/domain within a transcription factor plays an important role in its biological functions. These ID sequences provide large flexible surfaces that can allow them to make more efficient physical and functional interactions with their target partners. Since transcription factors regulate expression of target genes by interacting with specific coregulatory proteins, these ID regions/domains can be used as a platform for such large macromolecular interactions, and may represent a mechanism for regulation of cellular processes. The precise structural basis for the function of these ID regions/domains of the transcription factors remains to be determined. In the recent years there has been growing evidence suggesting that an induced fit-like process leads to imposition of folded functional structure in these ID domains on which large multiprotein complexes are built. These multiprotein complexes may eventually dictate the final outcome of the gene regulation by the transcription factors.

Highlights

  • Functional proteins and/or protein domains/ regions that appear to exist as an ensemble of reversible conformers with only little or no well defined secondary/tertiary structures, and are being recognized to contain amino acid sequences that fail to automatically fold into their fully compact functional conformations under physiological conditions, have grown exponentially in last decade or so [1,2,3,4,5,6,7,8,9,10]

  • There are reports showing that transcription factors with modular structures commonly possess one or more of intrinsically disordered (ID) regions/domains, and it is believed that nature has created such flexibility for specific functions that may require large structural flexibility under physiological conditions [12, 16]

  • With large data generated from various research groups on protein:protein interactions involving transcription factor and its relationship with target gene regulations, it has become possible to visualize a global view of biological networks

Read more

Summary

Review Article

Available evidences suggest that presence of ID region/domain within a transcription factor plays an important role in its biological functions. These ID sequences provide large flexible surfaces that can allow them to make more efficient physical and functional interactions with their target partners. In the recent years there has been growing evidence suggesting that an induced fit-like process leads to imposition of folded functional structure in these ID domains on which large multiprotein complexes are built. These multiprotein complexes may eventually dictate the final outcome of the gene regulation by the transcription factors

Introduction
Summary and Perspectives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.