Abstract

Increasing concentrations of CO2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call