Abstract

Studies published on rail vehicles— post-derailment behaviour as a means of minimizing consequences are surprisingly scarce. This paper sets a first step to reduce this lack of knowledge by analysing a collection of incident/accident case studies, with the main focus on the course of events immediately after derailments. This is mainly with respect to whether the train stays upright and close to the track centre-line and is ‘safe’ or deviates laterally with a probable serious consequence. Accordingly, an empirical database is established containing as much relevant information as possible of past incidents and accidents occurring at speeds over 70 km/h due to mechanical failure close to the running gear/track interface, as well as other causes that ultimately brought the train into a derailed situation. Although two derailments are never the same, certain patterns appeared to emerge based on the descriptions available in each incident or accident report. Mechanical restrictions between axles and bogie frames appear to minimize the risk of derailments after an axle failure on the outside of the wheel. Once derailed, evidence suggests that certain low-reaching parts on the wheelset or the bogie frame may act as substitute guidance mechanisms, thereby minimizing large lateral train deviations. However, for a large number of events, the available information does not allow conclusions based on observations only. This paper is the first in a forthcoming series dealing with the possibilities of minimizing devastating consequences of high-speed derailments by appropriate measures and features in the train design including the running gear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call