Abstract

Automotive self-driving capability is highly developed using camera vision but can benefit from the addition of independent sensor platforms for redundancy and further reduction of MTBF (mean time between failure). Frequency Modulated Continuous Wave (FMCW) Light Detection and Ranging (LIDAR) is particularly suited to this application by virtue of its capability to directly detect velocity as well as range with high resolution. However, such a system requires the dense integration of multiple optical components including lasers, amplifiers, phase and amplitude control low-noise photodiodes, mode converters, and optical waveguides. These must further be integrated in a compact form factor that can be manufactured in high volume. Silicon photonics using the Intel Hybrid Silicon platform can enable such optical integration on a silicon chip in a scalable high-volume manufacturing process, thus enabling chip-scale solid-state LIDAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.