Abstract

ABSTRACTNutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Salmonella enterica Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse Salmonella genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon. With expanding access to CRISPR-Cas9 for host genome manipulation, it is now pertinent to re-visit past results in the context of specific mouse models, identify gaps and incongruities in current knowledge landscape of Salmonella homeostasis, and recommend a straight path forward towards a more universal understanding of this historic host–microbe relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.