Abstract

Nickel-based single-crystal superalloys are the key materials for the manufacturing and development of advanced aeroengines. Rhenium is a crucial alloying element in the advanced nickel-based single-crystal superalloys for its special strengthening effects. The addition of Re could effectively enhance the creep properties of the single-crystal superalloys; thus, the content of Re is considered as one of the characteristics in different-generation single-crystal superalloys. Owing to the fundamental importance of rhenium to nickel-based single-crystal superalloys, much progress has been made on understanding of the effect of rhenium in the single-crystal superalloys. While the effect of Re doping on the nickel-based superalloys is well documented, the origins of the so-called rhenium effect are still under debate. In this paper, the effect of Re doping on the single-crystal superalloys and progress in understanding the rhenium effect are reviewed. The characteristics of the d-states occupancy in the electronic structure of Re make it the slowest diffusion elements in the single-crystal superalloys, which is undoubtedly responsible for the rhenium effect, while the postulates of Re cluster and the enrichment of Re at the γ/γ′ interface are still under debate, and the synergistic action of Re with other alloying elements should be further studied. Additionally, the interaction of Re with interfacial dislocations seems to be a promising explanation for the rhenium effect. Finally, the addition of Ru could help suppress topologically close-packed (TCP) phase formation and strengthen the Re doping single-crystal superalloys. Understanding the mechanism of rhenium effect will be beneficial for the effective utilization of Re and the design of low-cost single-crystal superalloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call