Abstract

With recent progress in material science, resistive random access memory (RRAM) devices have attracted interest for nonvolatile, low-power, nondestructive readout, and high-density memories. Relevant performance parameters of RRAM devices include operating voltage, operation speed, resistance ratio, endurance, retention time, device yield, and multilevel storage. Numerous resistive-switching mechanisms, such as conductive filament, space-charge-limited conduction, trap charging and discharging, Schottky Emission, and Pool-Frenkel emission, have been proposed to explain the resistive switching of RRAM devices. In addition to a discussion of these mechanisms, the effects of electrode materials, doped oxide materials, and different configuration devices on the resistive-switching characteristics in nonvolatile memory applications, are reviewed. Finally, suggestions for future research, as well as the challenges awaiting RRAM devices, are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.