Abstract
Abstract: Access to clean air, a vital necessity for life, faces severe constraints globally due to industrialization and urbanization, leading to widespread air quality deterioration. To safeguard human health and the environment from detrimental effects, the essential components of proper monitoring, assessment, and management of air quality are paramount. Conventional air quality analytical techniques such as gas chromatography/ mass spectrometry, selected ion flow tube mass spectrometry, thermal desorption/ gas chromatography, and mass spectrometry are widely used for air quality analysis. These methods, however, are laborious, necessitate sample preparation, require expansive and hazardous reagents, and have a high cost of equipment and maintenance. As such, more rapid, sensitive, specific, cost-effective, portable, user-friendly, and environmentally friendly analytical tools are required for efficient air quality monitoring and control. Over the years, various techniques have emerged to address these challenges, including mobile sensors, microbial monitoring, the Internet of Things (IoT), biomonitoring, and bio- and nanosensors in both indoor and outdoor settings. This paper offers an overview of recent advancements in air quality monitoring and assessment methods. The review encompasses sample preparations for air pollutants, data analysis methodologies, and monitoring strategies. It also delves into the crucial role of microorganisms in air quality analysis. Additionally, the paper explores the applications of the Internet of Things (IoT) and biosensors in air quality monitoring and assessment, elucidating their roles in advancing these endeavors. The paper concludes by presenting insightful perspectives on the current state of air quality monitoring techniques and outlining future directions for research and development in this critical field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.