Abstract

Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a modular and bio-orthogonal approach that is being adopted for the efficient synthesis of organic and bioorganic compounds. It leads to the selective formation of 1,4-disubstituted 1,2,3-triazole units connecting readily accessible building blocks via a stable and biocompatible linkage. The vast array of the bioconjugation applications of click chemistry has been attributed to its fast reaction kinetics, quantitative yields, minimal byproducts, and high chemospecificity and regioselectivity. These combined advantages make click reactions quite suitable for the lead identification and the development of pharmaceutical agents in the fields of medicinal chemistry and drug discovery. In this review, we have outlined the key aspects, the mechanistic details and merits and demerits of the click reaction. In addition, we have also discussed the recent pharmaceutical applications of click chemistry, ranging from the development of anticancer, antibacterial, and antiviral agents to that of biomedical imaging agents and clinical therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.