Abstract
One step on the way to approach human performance in robotics is to provide joint torque sensing and control for better interaction capabilities with the environment, and a large number of actuated degrees of freedom (DOFs) for improved versatility. However, the increasing complexity also raises the question of how to resolve the kinematic redundancy which is a direct consequence of the large number of DOFs. Here we give an overview of the most practical and frequently used torque control solutions based on null space projections. Two fundamental structures of task hierarchies are reviewed and compared, namely the successive and the augmented method. Then the projector itself is investigated in terms of its consistency. We analyze static, dynamic, and the new concept of stiffness consistency. In the latter case, stiffness information is used in the pseudoinversion instead of the inertia matrix. In terms of dynamic consistency, we generalize the weighting matrix from the classical operational space approach and show that an infinite number of weighting matrices exist to obtain dynamic consistency. In this context we also analyze another dynamically consistent null space projector with slightly different structure and properties. The redundancy resolutions are finally compared in several simulations and experiments. A thorough discussion of the theoretical and empirical results completes this survey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.