Abstract
This paper reviews experimental methods for the conversion of cone index measurements to bevameter parameters in support of vehicle soil/tire/track interactions for two general soil types, sand and lean clay. The accurate prediction of traction, motion resistance, and sinkage of tire/tracks off-road requires estimates of soil strength. Equipment used in the measurement of soil strength to support predictions of off-road mobility include the bevameter and the cone penetrometer. The portability of the cone penetrometer and rapid estimates of spatial/temporal variability in all terrain conditions make it an invaluable tool. The bevameter, a less portable tool, is used for the mechanical analysis of soils. The bevameter measures parameters defining soil strength in terms of cohesive modulus of soil deformation (kc), frictional modulus of soil deformation (kφ), exponent of soil sinkage (n), cohesion (c), angle of internal friction (φ), and the plate pressure at 1 in. (2.54 cm) of penetration (K) (Bekker, 1969). The field of terramechanics would greatly benefit from having the ability to convert cone penetrometer data in areas where bevameter parameters are difficult to collect. That ability to convert from cone index to bevameter parameters could be used for the large sets of existing cone index data to support determination of traction and motion resistance. This paper examines those methods for converting cone index to bevameter plate penetration parameters kc, kφ, and n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.