Abstract

The genus Streptomyces is one of the largest producers of secondary metabolites with bioactive properties of interest. However, many of the genes involved in synthesizing these compounds are silenced under laboratory conditions. One of the strategies used to activate these metabolic pathways is the elimination of repressor genes, which prevent the transcription of other genes. In this work, the lsr2 gene has been selected for study since it is a repressor with a preference for binding to AT-rich regions, which makes it exert its effect especially on those horizontally transferred gene sequences that have a very different GC content to the core Streptomyces spp. genome. Therefore, the effects of the deletion of this gene are observed, and, in addition, a mapping of the potential binding sites of Lsr2 in Streptomyces spp. genomes is proposed. As a result of this gene knockout, the production of various secondary metabolites is overproduced and/or activated, which suggests that the study of this regulator can be interesting in the field of natural product discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.