Abstract

This work investigates the problem of parameter estimation within the frameworks of deterministic and stochastic parameter estimation methods. For the deterministic methods, we look at constrained and unconstrained optimization approaches. For the constrained optimization approaches we study three different formulations: L 2 , error in constitutive equation method (ECE), and the modified error in constitutive equation (MECE) method. We investigate these formulations in the context of both Tikhonov and total variation (TV) regularization. The constrained optimization approaches are compared with an unconstrained nonlinear least-squares (NLLS) approach. In the least-squares framework we investigate three different formulations: standard, MECE, and ECE. With the stochastic methods, we first investigate Bayesian calibration, where we use Monte Carlo Markov chain (MCMC) methods to calculate the posterior parameter estimates. For the Bayesian methods, we investigate the use of a standard likelihood function, a likelihood function that incorporates MECE, and a likelihood function that incorporates ECE. Furthermore, we investigate the maximum a posteriori (MAP) approach. In the MAP approach, parameters’ full posterior distribution are not generated via sampling; however, parameter point estimates are computed by searching for the values that maximize the parameters’ posterior distribution. Finally, to achieve dimension reduction in both the MCMC and NLLS approaches, we approximate the parameter field with radial basis functions (RBF). This transforms the parameter estimation problem into one of determining the governing parameters for the RBF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.