Abstract
Applications of interrater agreement (IRA) statistics for Likert scales are plentiful in research and practice. IRA may be implicated in job analysis, performance appraisal, panel interviews, and any other approach to gathering systematic observations. Any rating system involving subject-matter experts can also benefit from IRA as a measure of consensus. Further, IRA is fundamental to aggregation in multilevel research, which is becoming increasingly common in order to address nesting. Although, several technical descriptions of a few specific IRA statistics exist, this paper aims to provide a tractable orientation to common IRA indices to support application. The introductory overview is written with the intent of facilitating contrasts among IRA statistics by critically reviewing equations, interpretations, strengths, and weaknesses. Statistics considered include rwg, , r′wg, rwg(p), average deviation (AD), awg, standard deviation (Swg), and the coefficient of variation (CVwg). Equations support quick calculation and contrasting of different agreement indices. The article also includes a “quick reference” table and three figures in order to help readers identify how IRA statistics differ and how interpretations of IRA will depend strongly on the statistic employed. A brief consideration of recommended practices involving statistical and practical cutoff standards is presented, and conclusions are offered in light of the current literature.
Highlights
The assessment of interrater agreement (IRA) for Likert-type response scales has fundamental implications for a wide range of research and practice
IRA statistics are critical to justification of aggregation in multilevel research, but they are frequently applied in job analysis, performance appraisal, assessment centers, employment interviews, and so forth
IRA offers a unique perspective from reliability because reliability deals with consistency of ratings and agreement deals with the similarity of absolute levels of ratings
Summary
The assessment of interrater agreement (IRA) for Likert-type response scales has fundamental implications for a wide range of research and practice. Underscoring the importance of IRA statistics is that, unlike interrater reliability and consistency statistics, IRA provides a single value of agreement for each rating target, thereby facilitating identification of units of raters who are very high or very low in agreement. This advantageous feature permits subsequent investigation of other substantive and theoretically interesting. LeBreton and Senter (2008) provided a seminal review of IRA and consistency statistics, but the focus was largely on implications of these types of statistics for multilevel research methods and not on the many other applications of IRA (e.g., agreement in importance ratings collected in job analysis; Harvey, 1991). A comment on IRA and interrater consistency is offered
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.