Abstract

Flying insects provide a clear demonstration that living organisms can display surprisingly competent mechanisms of guidance and navigation, despite possessing relatively small brains and simple nervous systems. Consequently, they are proving to be excellent organisms in which to investigate how visual information is exploited to guide locomotion and navigation. Four illustrative examples are described here, in the context of navigation to a destination. Bees negotiate narrow gaps by balancing the speeds of the images in the two eyes. Flight speed is regulated by holding constant the average image velocity as seen by the two eyes. This automatically ensures that flight speed is reduced to a safe level when the passage narrows. Smooth landings on a horizontal surface are achieved by holding image velocity constant as the surface is approached, thus automatically ensuring that flight speed is close to zero at touchdown. Roll and pitch are stabilized by balancing the signals registered by three visual organs, the ocelli, that view the horizon in the left, right and forward directions respectively. Tests of the feasibility of these navigational strategies, by implementation in robots, are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.