Abstract

Optical fiber based transmission network is the key technology to support high capacity backhaul needs for future wireless communication standards. Orthogonal Frequency Division Multiplexing (OFDM), Multiple Input Multiple Output (MIMO) transreception, Carrier Aggregation (CA), Co-operative Multi-Point (Co MP) and Wavelength Division Multiplexing (WDM) for backhaul/backbone are all, state of the art techniques used in most of these standards. The successful implementation of all these technologies requires modification of the network architecture which leads to challenges on backhaul design in terms of capacity and latency requirements. The optical fiber networks implemented in the form of analogue Radio over Fiber (RoF) or digital RoF offers a prospective solution. The performance of analogue RoF suffers from noise and linearity issues and digital RoF is degraded by fiber dispersion and nonlinearity due to high rate of transmission. Dispersion and nonlinearity compensation becomes essential to make the optical fiber backhaul supportive of the emerging wireless technologies. This paper reviews and compares various techniques proposed in the literature for compensating fiber dispersion and nonlinearity. A comprehensive comparison of fiber dispersion and nonlinear effects are summarized. Further, the selection criteria for choosing a particular compensating technique in Optical OFDM and WDM systems have been presented in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call