Abstract

One of the most critical tasks for improving data quality and increasing the reliability of data analytics is Entity Resolution (ER), which aims to identify different descriptions that refer to the same real-world entity. Despite several decades of research, ER remains a challenging problem. In this survey, we highlight the novel aspects of resolving Big Data entities when we should satisfy more than one of the Big Data characteristics simultaneously (i.e., Volume and Velocity with Variety). We present the basic concepts, processing steps, and execution strategies that have been proposed by database, semantic Web, and machine learning communities in order to cope with the loose structuredness , extreme diversity , high speed, and large scale of entity descriptions used by real-world applications. We provide an end-to-end view of ER workflows for Big Data, critically review the pros and cons of existing methods, and conclude with the main open research directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.