Abstract

The power conversion efficiencies (PCEs) of Perovskite solar cells (PSCs) have seen significant performance improvements between 2012 and 2022. PSCs have excellent optoelectronic properties and can be built using low-cost materials. In order to compete with first-generation photovoltaic technologies, it will be necessary to scale up production. This review article explores the advancements in several scalable perovskite deposition techniques, including recent developments in the fabrication of high-quality perovskite film, their stabilities and commercialization status. Several scalable deposition techniques are discussed, including user-friendly solution-techniques (spin coating, slot die coating, etc.), vapour-assisted deposition approaches in the laboratory and full-scale commercial applications. The aforementioned deposition techniques have advantages compared to deposition techniques based on cost, effective mask-less patterning and unparalleled-design freedom. Other potential advantages include optimal use of materials, scalability, contactless deposition in high-resolution and a rapid transformation from small laboratory-scale work to large industrial-scale roll-to-roll production. Most recent technological advancements and structural developments relate to long-term thermal stability and moisture resistance. Many of the developments are still in the evolving field of lab-scale devices. The improvement roadmap and commercialization aspects of PSC manufacture involve two significant milestones: bridging the gap between the performance characteristics of small-scale and large-scale devices and the scalable printing techniques for all the layers in the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.