Abstract

Projections of the pathways that reduce carbon emission to the levels consistent with limiting global average temperature increases to 1.5°C or 2°C above پاره-p990industrial levels often require negative emission technologies like bioenergy with carbon capture and storage (BECCS), it involves the conversion of biomass to energy, producing CO2 which is sequestered, transported and then permanently stored in a suitable geological formation. The potential of BECCS to remove CO2 from the atmosphere makes it an attractive approach to help achieving the ambitious global warming targets of COP 21. BECCS has a range of variables such as the type of biomass resource, the conversion technology, the CO2 capture process used and storage options. Each of the pathways to connect these options has its own environmental, economic and social impacts. This study gives an overview of Bioenergy with carbon capture and storage for the purpose of carbon mitigation while the challenges associated with using biomaterial was assessed, such as land use, water consumption and its economic constraints. The more certain way forward to underpin BECCS deployment, is to ensure that there is strong social support and integrated policy schemes that recognize, support and reward negative emission, for without negative emissions delivered through BECCS and perhaps other technologies, there is little prospect of the global targets agreed to at Paris, being met.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call