Abstract

Aptamers are short single-stranded oligonucleotides; due to their 3D structure, they can specifically bind to various targets. They can target several molecules ranging from metal ions, organic components to proteins, and large cells. According to the high affinity of aptamers, they can be used for diagnosis, therapeutic, vaccine development, and gene silencing applications. The conventional method for aptamer selection is known as the Systematic Evolution of Ligands by Exponential (SELEX). However, despite the efficiency of SELEX as a screening procedure, it is beneficial to develop more rational procedures for aptamer selection. Herein, in silico approaches can play an effective role given their potential in representing an efficient, cost-effective, parallelizable, and rapid strategy. In recent years, several attempts have been applied to develop algorithms and software for the rational selection of aptamers. However, there is still a need for more efforts to achieve the most efficient techniques in this area. In this review, we aim to overview different computational approaches that are used for aptamer selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.