Abstract
Fracture of welded joints has been an important research and industrial topic for a long time, having in mind the key role of welded joints in ensuring the safe operation and integrity of welded structures. This work contains an overview of application of micromechanical models to ductile fracture of welded joints. The main benefit of these models, in comparison with the classical fracture mechanics approach, is consideration of the local quantities (stress and strain) in prediction of damage development. The damage is quantified through the value of the damage parameter, which is typically related to the void nucleation, growth and coalescence for ductile fracture of metallic materials, i.e. the description of the material can be related to the actual material behaviour during fracture. Most of the presented studies, including those published by the present authors, are performed on steel as the base material, and the rest deal with aluminium alloys.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.