Abstract

We survey analytical methods and evaluation results for the performance assessment of caching strategies. Knapsack solutions are derived, which provide static caching bounds for independent requests and general bounds for dynamic caching under arbitrary request pattern. We summarize Markov and time-to-live-based solutions, which assume specific stochastic processes for capturing web request streams and timing. We compare the performance of caching strategies with different knowledge about the properties of data objects regarding a broad set of caching demands. The efficiency of web caching must regard benefits for network wide traffic load, energy consumption and quality-of-service aspects in a tradeoff with costs for updating and storage overheads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.