Abstract
Abstract The use of ammonia-based working fluids for absorption prevails in a wide range of applications due to the low freezing temperature of the refrigerant and the absence of crystallization as well as the lack of problems under vacuum conditions. This paper presents a comprehensive overview on the use of ammonia-based absorption chillers and heat pumps. The thermodynamic and physical properties of pure ammonia and binary and ternary ammonia mixtures are presented in correlation formulas. Developments and applications in subfreezing refrigeration, heating/domestic hot water, renewable energy utilization, waste heat recovery, thermal energy storage and miniaturization of absorption systems are presented and summarized. In subfreezing refrigeration, the evaporation temperatures for single-stage absorption lie mainly between −30 °C and −5 °C, and they can reach as low as −70 °C in advanced absorption systems. Air-source and ground-source absorption heat pumps are suggested for heating/domestic hot water applications in cold regions. For renewable energy uses, ammonia-based solar absorption applications with various working fluids are quite popular, whereas geothermal and biomass energy systems are less studied. In thermal energy storage, ammonia-based working fluids are not advantageous for storage capacity or cycle efficiency, but they prevail for subfreezing energy storage. Additionally, ammonia-based fluids are also attractive options for the miniaturization of absorption systems due to the absence of crystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.