Abstract
Type 1 diabetes (T1D) is one of the world's health problems with a prevalence of 1.1 million for children and young adults under the age of 20. T1D is a health problem characterized by autoimmunity and the destruction of pancreatic cells that produce insulin. The available treatment is to maintain blood glucose within the desired normal range. To meet bolus and basal requirements, T1D patients may receive multiple daily injections (MDI) of fast-acting and long-acting insulin once or twice daily. In addition, insulin pumps can deliver multiple doses a day without causing injection discomfort in individuals with T1D. T1D patients have also monitored their blood glucose levels along with insulin replacement treatment using a continuous glucose monitor (CGM). However, this CGM has some drawbacks, like the sensor needs to be replaced after being inserted under the skin for seven days and needs to be calibrated (for some CGMs). The treatments and monitoring devices mentioned creating a lot of workloads to maintain blood glucose levels in individuals with T1D. Therefore, to overcome these problems, closed-loop artificial pancreas (APD) devices are widely used to manage blood glucose in T1D patients. Closed-loop APD consists of a glucose sensor, an insulin infusion device, and a control algorithm. This study reviews the progress of closed-loop artificial pancreas systems from the perspective of device properties, uses, testing procedures, regulations, and current market conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.