Abstract

The Lithium-Sulfur (Li-S) system has gained a lot of interest as a promising next-generation rechargeable battery due to the high theoretical energy density, high theoretical capacity and abundance of sulfur. Many parameters of Li-S batteries such as sulfur loading, electrolyte-to-sulfur (E/S) ratio, type of the conductive network, electrode design, etc. have a profound impact on the capacity, energy density and cycling performance. But the effect of E/S ratio on the electrochemical performance of Li-S batteries is often neglected, although it is one of the most important parameters. A high electrolyte amount in the cells could decrease the energy density and increase the cost, therefore it could limit the practical use of Li-S batteries. In this work, we first presented a statistical study on the sulfur loading and electrolyte quantity in Li-S cells by reviewing 240 selected papers from the state-of-the-art Li-S research. This analysis revealed that the electrolyte quantity was not reported as often as the sulfur loading in the literature, and the reported E/S values differ by a fair amount from each other. Second, in order to explore the effect of different E/S ratios on the performance of Li-S cells, batteries with 5:1, 10:1, 20:1 and 30:1 E/S ratios were prepared. Galvanostatic cycling with potential limitation (GCPL), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) were used to analyze the effect of E/S ratio on the capacity fade, impedance, internal resistance and ion diffusivity in Li-S batteries. The effects of different electrolyte penetration conditions on the electrochemical performance of cells with the same E/S ratios were also studied by preparing cells with different resting times. It was shown that E/S ratio has a strong influence on the electrochemical performance of Li-S batteries, and an optimal E/S ratio should be achieved, which is low enough to minimize the free migration of active materials between the electrodes, and at the same time high enough in order to have a sufficient electrolyte wetting of the active material. It is suggested that capacity decay in batteries with low E/S ratios could be originating from electrolyte depletion, whereas the capacity decay in batteries with high E/S ratios could be due to the dissolved lithium polysulfide species in the liquid electrolyte and their diffusion to the lithium anode surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call