Abstract
Overlapping community detection is a hot topic in research of complex networks. Link community detection is a popular approach to discover overlapping communities. Line graph is a widely used model in link community detection. In this paper, we propose an overlapping community detection algorithm based on node distance of line graph. Considering topological structure of links in graphs, we use line graph to transform links of graph into nodes of line graph. Then, we calculate node distance of line graph according to their dissimilarity. After getting distance matrix, we proposed a new [Formula: see text] measure based on nodes of line graph and combine it with clustering algorithm by fast search and density peak to identify node communities of line graph. Finally, we acquire overlapping node communities after transforming node communities of line graph back to graph. The experimental results show that our algorithm achieves a higher performance on normalized mutual information metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.