Abstract

A technique for the simulation of multimode quantum optical interferometry and protocols in quantum communications is introduced. This technique is very efficient at simulating in the single-photon-counting regime. This works by treating the photons in the system as members of a multiphoton pulse and reducing the computation of measurable quantities to overlap integrals that may be precomputed and combined in a recursive algorithm. The simulation of a Mach-Zehnder interferometer and the Hong-Ou-Mandel effect are demonstrated using this technique. The results of these simulations perfectly agree with the theoretical results. Additionally, since the effects of the components in the system can be integrated into the quantum operators involved, the technique is agnostic to the components introduced into the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call