Abstract
The water-in-salt electrolyte (WISE) features intimate interactions between a cation and anion, which induces the formation of an anion-derived solid electrolyte interphase (SEI) and expands the aqueous electrolyte voltage window to >3.0 V. Although further increasing the salt concentration (even to >60 molality (m)) can gradually improve water stability, issues about cost and practical feasibility are concerned. An alternative approach is to intensify ion-solvent interactions in the inner solvation structure by shielding off outward electrostatic attractions from nearby ions. Here, we design an "overcrowded" electrolyte using the non-polar, hydrogen-bonding 1,4-dioxane (DX) as an overcrowding agent, thereby achieving a robust LiF-enriched SEI and wide electrolyte operation window (3.7 V) with a low salt concentration (<2 m). As a result, the electrochemical performance of aqueous Li4Ti5O12/LiMn2O4 full cells can be substantially improved (88.5% capacity retention after 200 cycles, at 0.57 C). This study points out a promising strategy to develop low-cost and stable high-voltage aqueous batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.