Abstract

This paper deals with reactive and flexible humanlike autonomous vehicle navigation. A human driver reactively guides his vehicle, performing a smooth trajectory within the roads limits until reaching the defined goal. To obtain a similar behavior with an unmanned ground vehicle (UGV), this paper proposes a flexible control law to drive a vehicle towards desired static or dynamic targets based on a novel definition of control variables and Lyapunov stability analysis. Moreover, a target assignment strategy, combined with an appropriate sigmoid function, that allow to perform smooth, flexible and safe vehicle navigation through successive waypoints is presented. The stability of the proposed control strategy is proved according to Lyapunov synthesis. Simulations and experiments are performed in different cases to demonstrate the reliability and efficiency of the control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.