Abstract
The segmentation of touching characters is still a challenging task, posing a bottleneck for offline Chinese handwriting recognition. In this paper, we propose an effective over-segmentation method with learning-based filtering using geometric features for single-touching Chinese handwriting. First, we detect candidate cuts by skeleton and contour analysis to guarantee a high recall rate of character separation. A filter is designed by supervised learning and used to prune implausible cuts to improve the precision. Since the segmentation rules and features are independent of the string length, the proposed method can deal with touching strings with more than two characters. The proposed method is evaluated on both the character segmentation task and the text line recognition task. The results on two large databases demonstrate the superiority of the proposed method in dealing with single-touching Chinese handwriting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Document Analysis and Recognition (IJDAR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.